Apache Avro# 1.11.0 Getting Started
(Python)

Table of contents
1 NOtICE fOr PYtNON 3 USEY'S.....cvicieciecie ettt sne e sne e
2 DowWNload and INSLall...........ooeiiiiiiiiieee e
3 DEFINING 8 SCHBMAL....c.eiitiiiiiieceeee bbbttt b b sre b naeas
4 Serializing and deserializing without code generation............c.ccoevererereseeieeneesese e

Apache Avro# 1.11.0 Getting Started (Python)

Thisisashort guide for getting started with Apache Avro# using Python. This guide only
covers using Avro for data serialization; see Patrick Hunt's Avro RPC Quick Start for a good
introduction to using Avro for RPC.

1 Notice for Python 3 users

A package called "avro-python3" had been provided to support Python 3 previously, but the
codebase was consolidated into the "avro" package that supports Python 3 now. The avro-
python3 package will be removed in the near future, so users should use the "avro" package
instead. They are mostly API compatible, but there's afew minor difference (e.g., function
name capitalization, such as avro.schema.Parse vs avro.schema.parse).

2 Download and Install

The easiest way to get started in Python isto install avro from PyPI using pip, the Python
Package Installer.

$ python3 -mpip install avro

Consider doing alocal install or using a virtualenv to avoid permissions problems and
interfering with system packages:

$ python3 -mpip install --user install avro
or

$ python3 -m venv avro-venv
$ avro-venv/bin/pip install avro

The official releases of the Avro implementations for C, C++, C#, Java, PHP, Python, and
Ruby can be downloaded from the Apache Avro# Releases page. This guide uses Avro
1.11.0, the latest version at the time of writing. Download and install avro-1.11.0-py2.py3-
none-any.whl or avro-1.11.0.tar.gzviapyt hon -m pi p avro-1. 11. 0- py2. py3-
none- any. whl orpython -m pip avro-1.11.0.tar.gz. (Asabove, consider
using avirtualenv or user-local install.)

Check that you can import avro from a Python prompt.

$ python3 -c 'inport avro; print(avro.__version__)'

Page 2

https://github.com/phunt/avro-rpc-quickstart
https://pypi.org/project/avro/
https://pip.pypa.io/en/stable/
https://avro.apache.org/releases.html

Apache Avro# 1.11.0 Getting Started (Python)

The above should print 1.11.0. It should not raisean | nport Err or .

Alternatively, you may build the Avro Python library from source. From your the root Avro
directory, run the commands

$ cd | ang/ py/
$ python3 -mpip install -e .
$ pyt hon3

3 Defining a schema

Avro schemas are defined using JSON. Schemas are composed of primitive types (nul |,
bool ean,i nt,l ong,fl oat,doubl e, byt es, and st ri ng) and complex types
(record,enumarray, map,uni on,andf i xed). You can learn more about Avro
schemas and types from the specification, but for now let's start with a ssmple schema
example, user.avsc:

{"nanespace": "exanple.avro",
"type": "record",
"nanme": "User",
"fields": [
{"name": "nane", "type": "string"},
{"name": "favorite_nunber", "type": ["int", "null"]},
{"name": "favorite_color", "type": ["string", "null"]}

This schema defines a record representing a hypothetical user. (Note that a schemafile can
only contain a single schema definition.) At minimum, arecord definition must include

itstype ("type": "record"),aname("nanme": "User"), andfields, inthiscase
name, favorite_nunber,andfavorite_col or.Weaso define anamespace
("namespace": "exanpl e. avro"), which together with the name attribute defines the

"full name" of the schema (exanpl e. avr o. User inthiscase).

Fields are defined via an array of objects, each of which defines a name and type (other
attributes are optional, see the record specification for more details). The type attribute

of afield is another schema object, which can be either a primitive or complex type. For
example, the nane field of our User schemaisthe primitivetype st r i ng, whereas the
favorite_nunber andfavorite_col or fiedsareboth uni ons, represented by
JSON arrays. uni onsare acomplex type that can be any of the typeslisted in the array; e.g.,
favorite_nunber caneither beani nt or nul | , essentially making it an optional field.

Page 3

spec.html#schema_primitive
spec.html#schema_complex
spec.html#schema_record

Apache Avro# 1.11.0 Getting Started (Python)

4 Serializing and deserializing without code generation

Datain Avro is always stored with its corresponding schema, meaning we can aways read a
seriaized item, regardless of whether we know the schema ahead of time. Thisalows usto
perform serialization and deserialization without code generation. Note that the Avro Python
library does not support code generation.

Try running the following code snippet, which serializes two usersto a datafile on disk, and
then reads back and deserializes the datafile:

This outputs:

Do make sure that you open your filesin binary mode (i.e. using the modeswb or r b
respectively). Otherwise you might generate corrupt files due to automatic replacement of
newline characters with the platform-specific representations.

Let's take a closer look at what's going on here.

avr 0. schema. par se takes a string containing a JSON schema definition as input and
outputsaavr 0. schema. Schemna object (specifically a subclass of Schens, in this case
Recor dSchema). We're passing in the contents of our user.avsc schemafile here.

https://docs.python.org/library/functions.html#open

Apache Avro# 1.11.0 Getting Started (Python)

WecreateaDat aFi | eW i t er , which we'll use to write serialized items to adatafile on
disk. TheDat aFi | eW i t er constructor takes three arguments:

* Thefilewell seridizeto

« ADatumWiter,whichisresponsiblefor actually serializing the itemsto Avro's
binary format (Dat umW i t er s can be used separately from Dat aFi | eWi t ers, eg.,
to perform IPC with Avro).

* Theschemawereusing. The Dat aFi | eW i t er needsthe schema both to write the
schemacto the datafile, and to verify that the items we write are valid items and write the
appropriate fields.

writer.append({"nane": "Al yssa", "favorite_nunber": 256})
writer.append({"nane": "Ben", "favorite_nunber": 7, "favorite_color": "red"})

WeuseDat aFi | eW it er. append to add itemsto our datafile. Avro records are
represented as Python di ct s. Sincethefieldf avori te_col or hastype["int",
"nul I "], wearenot required to specify thisfield, as shown in the first append. Were
we to omit the required namne field, an exception would be raised. Any extra entries not
corresponding to afield are present in the di ct areignored.

reader = Dat aFi | eReader (open("users.avro", "rb"), DatunmReader())

We open the file again, thistime for reading back from disk. We use aDat aFi | eReader
and Dat unReader analagoustotheDat aFi | eW it er and Dat unWWit er above.

for user in reader:
print user

TheDat aFi | eReader isan iterator that returnsdi ct s corresponding to the serialized
items.

Page 5

	Table of contents
	1 Notice for Python 3 users
	2 Download and Install
	3 Defining a schema
	4 Serializing and deserializing without code generation

